
Data Distribution Strategies for Providing
Database Scalability in E-commerce Applications'

Haiwei Ye Brigitte Kerhervi Gregor v. Bochmann Don Bourne

Universite' de
Montre'al IBM Canada Ltd Universite' du Que'bec

a Mnntre'al University of Ottawa

ye@ iro.umontreal.ca Kerherve.Brigitte@uqam.ca bochmann@site.uottawa.ca dbnurne@ca.ibm.com

Abstract

The number of users of e-commerce applications is
increasing, and users are becoming more and more
sensitive to the quality of the ofSered services. This paper
discusses performance and scalability issues for back-end
parallel or distributed database servers used in e-
commerce applications. We argue that database
scalability rannot be achieved without considering
eflcient data placement. In particular data distribution
strategies yhould consider the specqics of e-cornmerce
applications and user expectations in ternis of quality of
service. We propose a generic data distribution strategy
integrating user class information.

1. Introduction

Quality of Service (QoS) support in e-commerce
systems means that the different components of the
system all have to work toward providing security, high
availability and fast response times [l]. In this paper we
are interested in business-to-consumer (B2C) e-commerce
and we focus on performance and scalability, which are
the great challenges to be met for making e-coininerce
successful and largely adopted by customers.

In our previous work, we have studied QoS support
in distributed database systems, and we have focused on
integrating information on network and server
performance for enhancing distributed query processing
algorithms with adequate cost models [4, 51. We are now
interested in applying such approaches on how to wisely

This work was supported by a grant from the Canadian Institute for
Telecommunication Research (CITR), under the Network of Center for
Excellence Program of the Canadian Government, a collaborative
research and development grant from NSERC no CRD-226962-99 and
by a student fellowship froin E M .

1530-1354/01 $10.00 0 2001 IEEE

layout the data across the nodes in e-commerce systems.
Because we believe the performance and scalability of a
database system are contingent on the data distribution. In
addition, a poor data distribution strategy can result in a
non-uniform distribution of the load and the formation of
bottlenecks.

In this paper, we concentrate on data distribution in
e-commerce applications. Such applications are specific
compared to those addressed in traditional data
distribution strategies since (i) they are less dynamic in
the sense that access patterns to the database are static and
can be obtained from the application source code; (ii) they
need more consideration of the user expectations in terms
of quality of the provided service; and (iii) their capability
to satisfy these expectations should adapt to the high
variations in the number of connected customers.

Traditional data placement [2, 61 strategies are
derived based on application characteristics (including
data access pattern and data access frequency) and SQL
complexity (referring to the number of tables participating
in the query and number of joins involved). These factors
are not sufficient to propose an optimal partitioning
schema for the e-commerce application if user's concerns
are ignored. In this paper we extend traditional way of
data distribution by adding user class information. That is,
our data distribution strategies should integrate
distribution decisions based on user QoS expectations as
well as on e-commerce application characteristics.

Defining classes of users is a way to differentiate
users according to their QoS expectation in order to
provide different levels of service based on priorities.
This is an important factor to take into account to come
up with an optimal data distribution strategy. Under the
assumption that a higher priority user class should get
better performance in terms of response time, we want to
allocate the required data, for example, to more nodes, so
that parallelism can be utilized for query execution. This
also requires that the DBMS supports such priority
awareness so that to route the query from different classes
of users to different node groups.

86

mailto:dbnurne@ca.ibm.com

The remainder of the paper is organized as follows.
Section 2 demonstrates our approach for the data
distribution and proposes a generic methodology for data
distribution in e-commerce applications. In Section 3, we
present our conclusions and point out some future work.

2. Our approach

As pointed out in [3], “the customer’s behavior while
interacting with an e-commerce site has impacts on the IT
resources of the site and on the revenue of the e-store”.
Eventually, this customer’s behavior will affect the
database access pattern. We believe it is also important to
factor in user’s information while organizing the e-store
data for the back-end database system. For this study, we
take different classes of users into account during the
design of data distribution strategy.

2.1. User classes

A user class is a generalization of a number of users
sharing common characteristics. Classification of users
can be based on different policies and criteria. For
example, different users may exhibit various patterns of
navigation through an e-commerce site, therefore based
on their navigation behavior, we can segregate users into
two classes: buyer and browser. Another example of
segregating users can be as simple as priority based. That
is we differentiate users into different classes according
to, for example, their profit brought to an e-store. Thus an
e-commerce site tries to provide better service to higher
priority user than to lower priority user. A user perceived
quality of service in e-commerce application could be the
response time for each request. Or in a hybrid mode, these
criteria can be combined together. For example, in the
high priority user class, we have the buyer class and
browser class. Similarly, the low priority class can also be
divided into buyer and browser categories.

How to classify users and what criteria should be
applied deserve a careful study. However, this is not the
main concern of this paper. The main focus of the user
class aspect is how to provide the possibility to consider
such a factor. Therefore, what is important to our study is
that we should realize the existence of different classes of
users exist which may generate different workload to the
database system. Accordingly, by collecting information
relevant to user class, we can determine what
communication modes, or database resources are being
used by a particular class. This may allow for
improvements to the system performance based on usage.

The basic idea of user class consideration in our data
distribution strategy is that by allocating different
resources, e.g. number of database nodes, to different
classes of users, we can route the database requests to
different resources. Partitioning requests not only

improves the performance, but also provides different
QoS levels. If the node cluster is our main concern, we
could apply different distribution schema for each set of
nodes. For example, the data distribution schema for
browser user should be different from the one for buyer
user. Because most activities of users in the browser class
are searching and browsing, thosc data related to payment
and shopping cart might not utilize the same resources as
the data storing product information. On the other hand,
for users in the buyer class, information related to
payment has to be accessed with very good performance.
Based on this heuristic, if, for example, 5 database nodes
are available for each class, the following distribution
schema might be reasonable: for browser class, 4 nodes
could be allocated to product related data and only 1 node
to store the data relevant to payment activities; for buyer
class, 4 nodes dedicating for payment information will
improve the performance and I node for product data.

Differentiating users can also be achieved by
providing different data representation and data quality.
For example, the data stored in the database for high
priority user class could include multimedia format. In
addition, data quality for different users could be different
too. For example, one metric defined in data quality is
timeliness, i.e. outdate or up-to-date. For high priority
user, we may set the update frequency higher than that for
low priority user to provide a better data quality (in term
of timeliness in this example). This paper focuses on the
performance category of QoS.

2.2. Data distribution strategies

The general method in our study is to allocate
different database resources to different classes of user
first and then apply the distribution strategy to each user
class. Such procedure is expressed in the following steps:
1) Use resource allocation strategy to decide the number

of database nodes of each user class.
2) For each user class, executing following steps:

a) Deriving database access pattern from the

b) Collecting and analyzing the related statistics

c) Applying data distribution algorithm

characteristics for this class

information

Resource allocation. The first step is a resource
allocation issue, which is a question of how to divide up
the available resources among available user classes. To
simplify the discussion, we consider, in this paper, one
database node as one unit of resource. In the
implementation, this abstract resource could be mapped to
different hardware and software, such as CPU, memory,
disk and network bandwidth.

Different QoS levels can be provided by either
shared resource or segregated resource. In the case of
shared resource, all the user classes access the same

87

resource. When there is plenty of resource, all the QoS
requirements can be satisfied. When the resource
utilization reaches to a point (or threshold, for example
80%) such that the system cannot guarantee all the QoS
requirements, some admission control policies may be
triggered to reject the requests from low priority user. In
this method, an important step is how to decide the
reasonable threshold. A high threshold may lead to
service degradation for high priority user. In contrast, a
low threshold may reject too many low priority users and
lead to under utilization of' system resource. This value
could be derived from the simulation and should be later
tuned for the purpose of changing policy or workload.

In the case of segregated resource, one feasible
solution is to keep several copies of an identical database,
with each copy for a particular user class, and then
allocate the resources to different user classes. If the
resource is the number of database nodes, then the
allocation is to decide how many disjoint sets of nodes
needed for different classes. The example we showed at
the end of Section 2.1. belongs to this case. In this
method, we have to address the problem of how to decide
how many nodes to choose for each class. The decision is
made depending on several factors such as the workload
type, the navigation pattern for each class as well as the
total available resources. This is also a policy issue. To do
this, we can analyze the HTTP log and monitor resource
utilization for each node. For example, from the HTTP
log and monitor information, we observe that 80% of the
total requests are searching product and only 20% involve
payment activity, we could allocate 4/5 of the total data-
base nodes to browser class and 115 to buyer class.

No matter which resource allocation strategy is
applied, the data distribution strategy should allow for the
use of flexible mechanisms that can adapt to workload
change. For example, the resource allocation method
shown in the above example will not be suitable if the
observation of the workload shows that the payment
activity increase to 40%. Therefore, with the time goes
on, the number of users in each class will change and thus
the number of nodes reserved for each class should also
be adjusted to the new circumstance.

Distribution strategy. Ideally, we attempt to duplicate all
the tables among all the available nodes for one user
class. Because this will provide the maximum flexibility
of utilizing the parallel techniques and reducing data
transmission. However, this kind of replication strategy
will greatly degrade the system's performance if the
environment is updated intensively (such as insert, update
or delete SQL), as required by the application. Therefore,
data partitioning is useful in scenarios where there are
frequent updates.

Accordingly, our heuristic is to pick up those tables
that can be replicated first and then, for the rest of the
tables, decide on the partitioning key. The data

distribution algorithm can be summarized in two steps:
(1) Grouping tables into two sets for replication (denoted
as Srep) and partitioning (denoted as Spar& respectively;
and (2) Selecting the partitioning key for tables to be
partitioned

The replication strategy can be chosen to duplicate all
the tables in S,, across all the available nodes for that
particular class in the database server. For selecting
partition key, we can use the frequency information for
join or update attributes as our selection criterion. In
addition, the selection of the partitioning key should also
obey the constraints imposed by different
implementations of the DBMS.

3. Conclusion and Future Work

This paper has discussed issues related to the
scalability and performance of back-end database servers
used in e-commerce applications. We proposed strategies
for data distribution considering e-commerce application
characteristics as well as user classes. We proposed to
differentiate users according to their access patterns to the
database. Our strategies include decisions on the
configuration of the database in terms of the number of
nodes as well as distribution strategy associated to each
user class. The distribution strategy consists both
partitioning method and replication method.

This work constitutes a first step for providing data
distribution strategies allowing database scalability in e-
commerce applications. Future work includes improve-
ment of our data distribution strategy to provide dynamic
data reorganization and additional studies on user classes
for a wider definition of the access patterns and resource
needs as well. We also plan to integrate our approach into
the algorithm for QoS based query processing.

References

111 G. v. Bochmann, B. KerhervC and M. Mohamed-Salem, published in
a chapter in book Quality of service nurnugement issues in electronic
commerce upplications, Electronic Commerce Technology Trends:
Challenges and Opportunities, IBM Press, 2000.

[2] M.L. Lee, M. Kitsuregawa, B.C. Ooi, K. Tan. A. Mondal, Towards
Selj%uning dutu plucement in purallel database system, SIGMOD
2000,225-236.

131 D. A. Menasce, V. A.F. Almeida, Scaling for E-Business
Technologies, Models, Per form" , und Capacity Planning,
ISBN:O-l3-086328-9, Prentice Hall Canada, 2000

[4] H. Ye, B. Kerhervt and G.. v. Bochmann, Quulity of service aware
distributed query processing, 10th DEXA Workshop on Query
Processing in Multimedia Information Systems (QPMIDS),
Florence, Italy, 1-3 Sept. 1999

[5] H. Ye, G. v. Bochmann, B. Kerher6, An ahptive cost nudel for
distributed query processing, UQAM Technical Report 2000-06,
May 2000.

[6] D. C. Zilio, A. Jhingran, S. Padmanabhan, Parlitioning Key Selection
fo r a Shared-Nothing Parallel Database System TSM Research
Report RC 19820 (87739) 11/10/94

88

